July 2, 2018

Barbara and Herb Wuensch 3310 43rd Street NW Gig Harbor, WA 98335

Re: Wuensch Short Plat

Dear Barbara and Herb:

This letter presents a drainage plan for the proposed Wuensch Short Plat located at 14455 Sunrise Drive NE in Bainbridge Island, Washington. The proposed project includes construction of a single family residence and a driveway.

EXISTING CONDITIONS

The existing property is approximately 2.5 acres (ac) in size. There is an existing access driveway (4,450 square feet, sf) along the southern property line leading to a house (4,962 sf) near the western property line. The remaining area of the property is mostly native trees and landscaping around the house and driveway.

Soils on site are mapped as approximately 95% Hartline gravelly sandy loam and 5% Kapowsin gravelly sandy loam by the United States Department of Agriculture's (USDA's) National Resource Conservation Service (NRCS) Web Soil Survey. A site visit was conducted on 8/4/17 where a soil sample was collected from a location near the northeastern corner of the property. We found silty sand to a depth over 3 feet (ft); a grain size analysis on this sample shows that onsite infiltration is feasible.

The site generally slopes to the east with entirely moderate (5 to 15%) slopes

DOWNSTREAM ANALYSIS.

Storm water runoff from the property drains in a dispersed manner through dense vegetation with no observed channelization of runoff from the site. Eventually, runoff from uphill and downhill of the site are collected in the uphill swale along Sunrise Drive (see Drainage Map below). The Sunrise Drive swale conveys runoff south, through several 12-inch driveway culverts, and enters a 12-inch storm drain after approximately 400 ft. This storm drain conveys runoff across Sunrise Drive to the east, and outlets into a rock swale on private property. From this point, runoff meanders to the northeast for approximately 2,000 ft before discharging into Puget Sound.

PROPOSED DRAINAGE SYSTEM

The proposed project will result in the construction of a house (roof area = 2,537 sf), and a driveway (exposed area = 2,843 sf) (see on site Drainage Map). Since the project creates more than 5,000 sf of new and replaced hard surface area, minimum requirements #1 through #9 of the Department of Ecology's Stormwater Management Manual for Western Washington (SWMMWW), 2014 edition, will apply. Table 2 below illustrates how each minimum requirement will be met. Due to the proposed

layout's proximity to the down slope side of the property, full dispersion is not feasible (see LID Assessment below), however the soil is favorable for infiltration.

We propose to infiltrate the proposed house, proposed driveway, and a portion of the existing driveway via a rain garden to be constructed along the eastern property boundary, near the northeast corner. With a design infiltration rate of 0.97 inches/hour (see Hydraulic Conductivity Calculation below), we found that a rain garden with a bottom area of 1,089 sf will achieve 99.84% infiltration of all inflows to the facility (see Drainage System Calculations below). Any overflows will disperse into forest vegetation just down slope to the east. The existing driveway will connect to the northeastern rain garden via a grass swale constructed just down slope to the northeast. The grass swale conveys water south and then east, crossing the proposed driveway via a 12-inch high-density polyethylene (HDPE) pipe, and then enters another grass swale that conveys runoff north and into the proposed rain garden. The proposed driveway either sheets flows directly into this grass swale, or the rain garden itself. The proposed roof downspout drainage system will connect to the rain garden via a 4-inch polyvinylchloride (PVC) pipe coming from the northeast corner of the proposed house, and discharging onto a rock pad at the bottom of the rain garden.

All disturbed landscape areas on site will be amended to meet the requirements of BMP T5.13 Post-Construction Soil Quality and Depth.

The Department of Ecology's Western Washington Hydrology Model (WWHM) 2012 edition was used to model the proposed drainage system and the onsite existing conditions. The increase in the 100-year storm event volumetric flow rate actually decrease by 0.26 cubic feet per second (cfs) between the existing and proposed conditions (see Basin Flow Calculations below).

See Table 1 below to see a breakdown of the change in size of land types for the proposed short plat.

/ Tea Changeo		
Areas	sf	ac
New Impervious	5,380	0.124
Converted to Landscaping	20,088	0.461
Pollution Generating Impervious Surface	7,293	0.167
Total Effective Impervious Surface	14,792	0.340

Table 1 Area Changes

ONSITE UTILITIES

Water:

The project site is located within the Kitsap Public Utility District's North Bainbridge Group A water system area. We propose that the house will connect to this system via a new water meter to be located next to the existing water meter in the southeast corner of the property, with a water line running directly to the southeastern corner of the proposed house.

Sanitation:

The project will construct two septic drainfields on site. These drainfields are approximately 1,800 sf in size and are located west of the proposed house and driveway.

Other:

Power and telecommunication utilities will be designed by others.

EROSION CONTROL

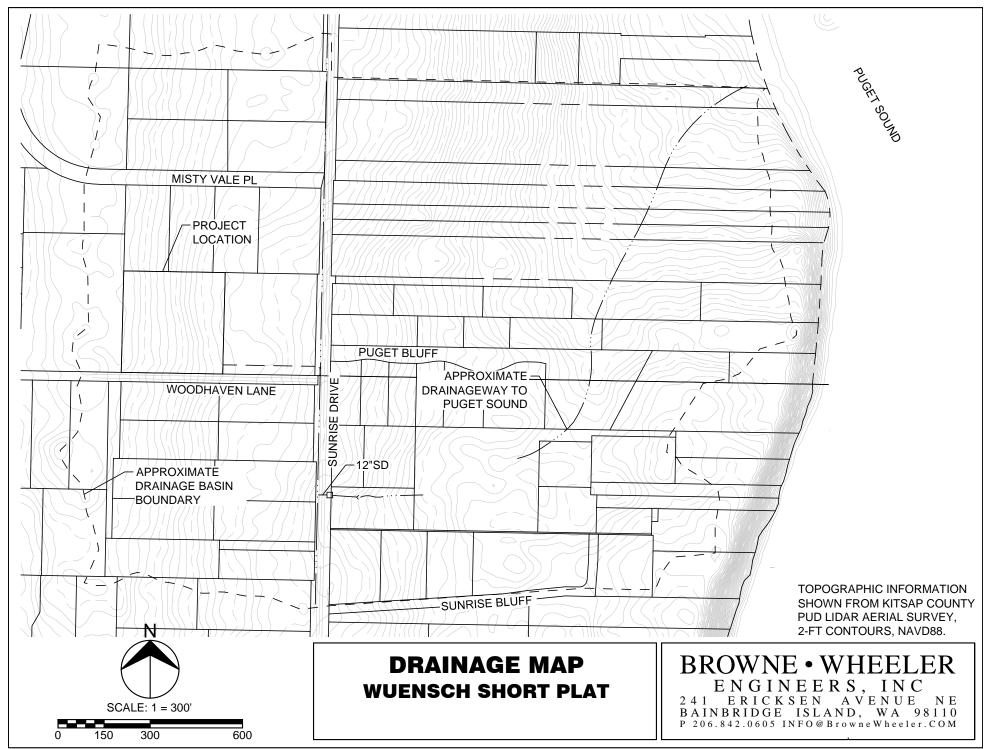
The Contractor will be responsible for maintaining erosion control facilities on the site during construction and for ensuring that sediment does not leave the site. The general principles of construction pollution prevention are:

- Retain native vegetation
- Prevent erosion rather than treat sediment-laden water.
- Employ site specific best management practices (BMPs)
- Divert upslope runoff around disturbed areas
- Phase construction operations to reduce the total amount of disturbance at one time
- Amend soils before seeding
- Minimize the slope lengths and steepness of disturbed areas
- Reduce runoff velocities
- Prevent the tracking of sediment off site
- Employ BMPs that address not only erosion but also other potential pollutants.

Table 3 below describes a number of BMPs which we believe are the minimum required to prevent erosion. It should be noted that other measures may be needed to minimize the movement of sediment and shall be put in place as needed. To prevent erosion the contractor should take special care to ensure that exposed soils are covered by mulch, plastic, sod, or some other form of source control. Clearing limits should be contained by clearing limits fencing and silt fencing. The contractor should install and maintain fencing along these limits and ensure that disturbance outside of these limits does not occur unless needed. If the contractor needs to employ additional BMPs, they should reference the *SWMMWW*, 2014 edition for additional information.

Very truly yours,

BROWNE WHEELER ENGINEERS, INC.



Summary of Stormwater Minimum Requirements			
Minimum Requirement	Comment		
1. Stormwater site plan	A stormwater site plan is presented.		
2. Construction stormwater pollution prevention	See Table 3 below for an explanation of how pollution will be prevented during construction.		
3. Source control of pollutants	Not applicable. No sensitive water bodies exist within the downstream flow path.		
4. Preservation of natural drainage systems and outfalls	All stormwater that is not infiltrated in the proposed rain garden will continue to discharge from the property at the same locations and in a similar manner as it does in its current condition.		
5. On-site stormwater management	Runoff generated from all impervious areas will be infiltrated via a rain garden. Disturbed areas on site will be amended to meet the design guidelines of BMP T5.13: Post-Construction Soil Quality and Depth. These BMPs are a part of Low Impact Development (LID) List #2.		
6. Runoff treatment	Runoff from all impervious surfaces will be conveyed to a rain garden that treats all inflows (see Off-site Flow Calculations below).		
7. Flow control	The project results in a decrease of off- site runoff by 0.26 cubic feet per second (see Off-site Flow Calculations below)		
8. Wetlands protection	Not applicable. Site runoff never comes into contact with a wetland.		
9. Operation and maintenance (O&M)	An O&M manual will be provided for the final building permit submittal.		

Table 2Summary of Stormwater Minimum Requirements

Table 3
Elements of Construction Storm water Pollution Prevention

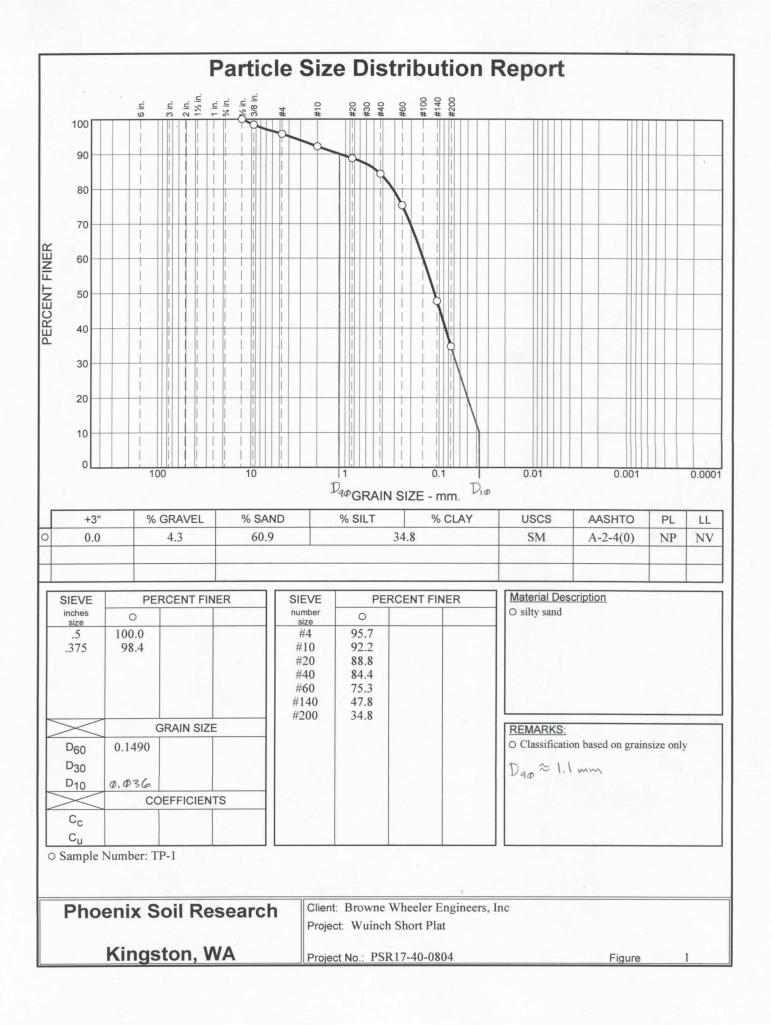
Element	Comment
1. Preserve Vegetation/Mark Clearing Limits	The disturbed area will be contained by high-visibility sediment fencing down slope of the construction site, and clearing limit fencing upslope. Efforts will be made to minimize the disturbed area in order to preserve vegetation.
2. Establish Construction Access	Not applicable. The existing access gravel driveway will prevent the tracking of sediment onto the public right-of-way.
3. Control Flow Rates	Not applicable. Very little to no grading will be done for this project. If flow rates become an issue, straw wattles may be used to slow down storm water runoff.
4. Install Sediment Controls	Runoff from exposed soil areas will have to flow through sediment fencing before flowing the native vegetation off-site.
5. Stabilize Soils	Exposed soils will be covered by mulch, plastic, sod, or some other form of source control.
6. Protect Slopes	Exposed slopes will be covered in the same manner as exposed soils above.
7. Protect Drain Inlets	Not applicable.
8. Stabilize Channels and Outlets	Not applicable. Temporary onsite conveyance channels are not used for this project.
9. Control Pollutants	All pollutants shall be handled and disposed of in a manner that does not cause contamination of storm water. Any onsite temporary storage areas will be located away from high vehicular traffic areas.
10. Control Dewatering	If needed, discharge water in a manner that ensures it is safely cleaned before being discharged (i.e.: discharge slowly through a discharge bad at the base of the slope in a vegetated area), and in a manner that does not cause erosion.
11. Maintain BMPs	BMPs will be checked weekly and immediately after storm event, and addition materials will be kept onsite for maintenance and emergencies.
12. Manage the Project	Project phasing will be used to prevent soils from being exposed for extended periods of time, and erosion and sediment control (ESC) materials will be kept on-hand for maintenance and emergency situations.
13. Protect Low Impact Development BMPs	All heavy equipment will be kept off soils existing under LID facilities that have been excavated during construction. Prevent compaction of the rain garden by excluding both construction and foot traffic. Coordinate will employees of Utilities and Contractors to ensure protection of the rain garden during construction.

FILE NAME: DRAINAGE MAP.DWG PLOT DATE: 7/2/2018 3:21 PM PLOT DEVICE: DWG TO PDF.PC3 PAGE SETUP: ---- PLOTTED BY: BRYAN

ENGINEERING CALCULATIONS

Applicable Minimum Requirements: #1 through #9 List #2

Lawn and Landscaped ares:


Priority	BMP	Feasible	Infeasible	N/A	Justification
1	T5.13: Post-Construction Soil Quality and Depth	Х			

Roof areas:

Priority	BMP	Feasible	Infeasible	N/A	Justification
1	T5.30: Full Dispersion		Х		100-foot flow path requirement
					cannot be met
1	T5.10A: Downspout Full		Х		Insufficient space to fit infiltration
	Infiltration				system and driveway rain
					garden
2	T7.30: Bioretention Cells,	Х			
	Swales, and Planter				
	Boxes				
2	T5.14A: Rain Gardens				
3	T5.10B: Downspout				
	Dispersion Systems				
4	T5.10C: Perforated Stub-				
	out Connections				

Other Hard Surface areas:

Priority	BMP	Feasible	Infeasible	N/A	Justification
1	T5.30: Full Dispersion		Х		100-foot flow path requirement
					cannot be met
2	T7.30: Bioretention Cells,	Х			
	Swales, and Planter				
	Boxes				
2	T5.15: Permeable				
	Pavements				
2	T5.14A: Rain Gardens				
3	T5.11: Concentrated				
	Flow Dispersion				
3	T5.12: Sheet Flow				
	Dispersion				

Soil Grain Size Analysis Method

SWMMWW 2012 - Vol. III, 3.3.6 Design Saturated Hydraulic Conductivity - Guidelines and Criteria

Determing K_{sat}(initial):

 $log_{10}(K_{sat}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08f_{fines}$

- D_{10} , D_{60} , D_{90} = grain sizes in mm for which 10, 60, and 90 percent of the samples is more fine.

- f_{fines} = the fraction of soil (be weight) that passes the #200 seive

- K_{sat} is in cm/s (*measured (initial) rate)

Sample	TP1
D ₁₀ [mm]	0.036
D ₆₀ [mm]	0.149
D ₉₀ [mm]	1.1
f _{fines}	0.348
K _{sat} (initial) [cm/s]	0.0058
K _{sat} (initial) [in/hr]	8.20

Determining Correction Factor (CF):

Total Correction Factor, $CF_T = CF_v \times CF_t \times CF_m$

*See Table III-3.3.1 Correction Factors to be Used With In-Situ Saturated Hydraulic Conductivity Measurements to Estimate Design Rates

CF _v	0.33	*assumed
CF _t	0.4	
CF _m	0.9	
CF _T	0.1188	

Determining K_{sat}(design):

 $K_{sat}(design) = K_{sat}(initial) \times CF_{T}$

K _{sat} (design)	0.97 in/hr

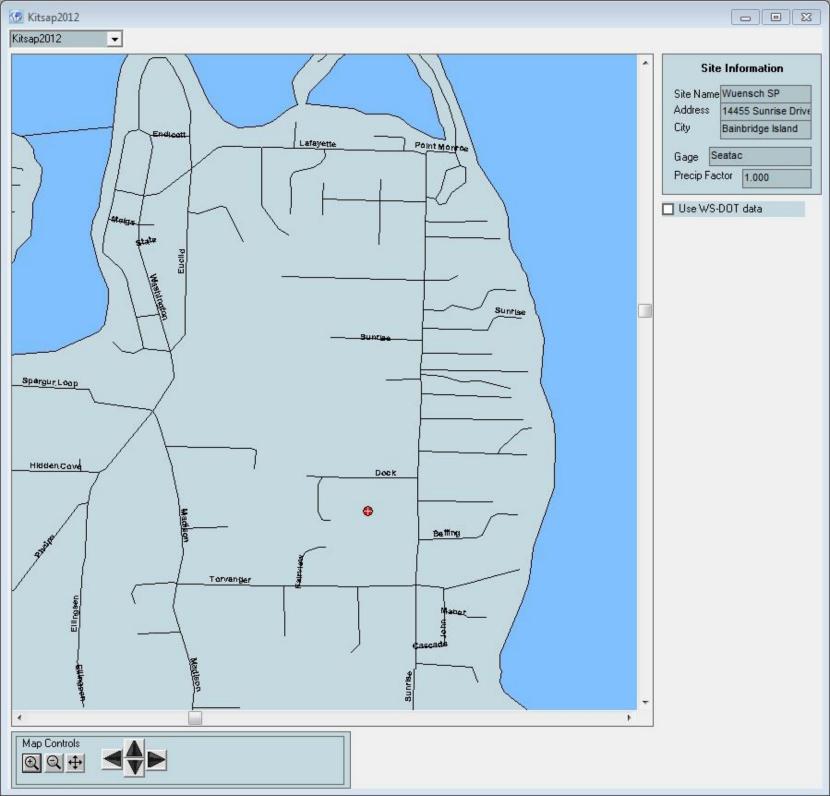
EXISTING RAIN GARDEN

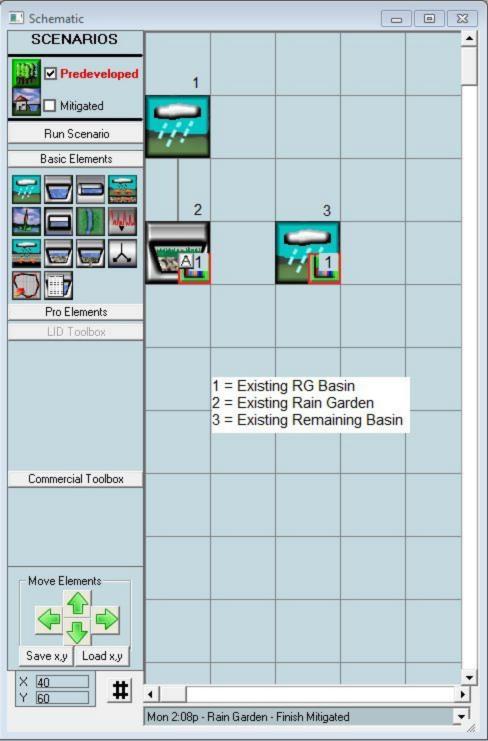
Contributing basin area:	sf	ac
Upslope lawn	5,468	0.126
Existing house roof	4,962	0.114
Total	10,429	0.239
Minimum size requirements:		
5% of contributing impervious area	248 st	f
+ 2% of contributing pervious area	109 st	f
Total minimum ponding area	357 st	F
Assumed shape	square	
Pond side lengths (square root of pond area)	18.9062 ft	
Side slopes	3 :1	(H:V)
Max. ponding depth	1 ft	
Bottom area side lengths (sloped from max pond depth)	12.9062 ft	
Minimum Bottom area size (bottom area side lengths squared)	167 si	F
Modelled rain garden		
Calculated Infiltration Rate (TP1)	0.97 in	/hr
Bottom side lengths (L)	20.00 ft	
Bottom area (L*L)	400 s	f
Percent of total inflow volume infiltrated	99.99 %	, D

*See attached WWHM 2012 Recharge Model pictures.

NE RAIN GARDEN

NE RAIN GARDEN		
Contributing basin area:	sf	ac
Pervious Areas	27,716	0.636
Upslope lawn	27,716	0.636
Impervious Areas	9,830	0.226
Existing driveway	4,450	0.102
Proposed driveway	2,843	0.065
Proposed house roof	2,537	0.058
Total	37,546	0.862
Minimum size requirements:		
5% of contributing impervious area	492 s	f
+ 2% of contributing pervious area	554 s	f
Total minimum ponding area	1046 s	f
Assumed shape	square	
Pond side lengths (square root of pond area)	32.3391 ft	t
Side slopes	3 :"	1 (H:V)
Max. ponding depth	1 ft	t
Bottom area side lengths (sloped from max pond depth)	26.3391 ft	t
Minimum Bottom area size (bottom area side lengths squared)	694 s	f
Minimum bottom area size that achieves 100% infiltration:		
Calculated Infiltration Rate (TP1)	0.97 ir	n/hr
Bottom side lengths (L)	33.00 ft	t
Bottom area (L*L)	1089 s	f
Percentage of total inflow volume infiltrated	99.84 %	6
*See attached W/W/HM 2012 Decharge Medal pictures		

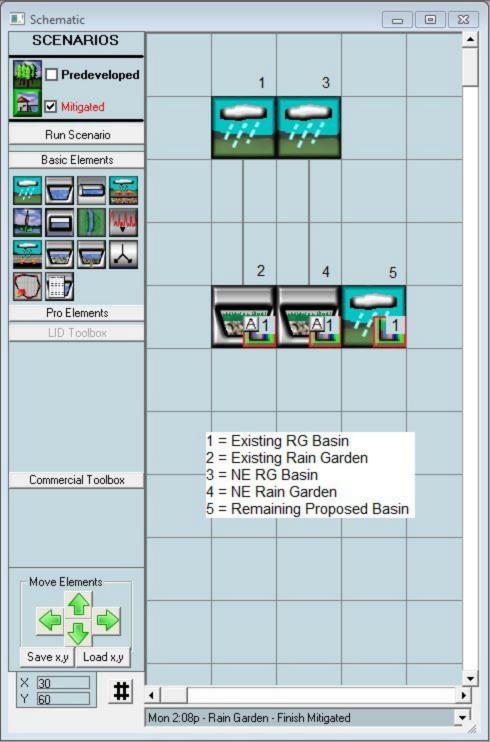

*See attached WWHM 2012 Recharge Model pictures.


	sf	ac	% of TSA
Total Site Area (TSA)	108,849	2.499	100.0
Disturbed Area	26,310	0.604	24.2
	-,		
EXISTING CONDITION	sf	ac	% of TSA
Basin			
Pervious Areas	99,437	2.283	91.4
Forest, mod	68,907	1.582	63.3
Lawn, mod	30,530	0.701	28.0
Impervious Area	9,412	0.216	8.6
Roof	4,962	0.114	4.6
Driveway, mod	4,450	0.102	4.1
Total	108,849	2.499	100.0
EXISTING CONDITION FOR WWHM	sf	ac	% of TSA
Existing RG Basin			
Pervious Areas	5,468	0.126	5.0
Lawn, mod	5,468	0.126	5.0
Impervious Areas	4,962	0.114	4.6
Roof	4,962	0.114	4.6
Total	10,429	0.239	9.6
Remaining Basin			
Pervious Areas	93,970	2.157	86.3
Forest, mod	68,907	1.582	63.3
Lawn, mod	25,063	0.575	23.0
Impervious Area	4,450	0.102	4.1
Driveway, mod	4,450	0.102	4.1
Total	98,420	2.259	90.4

PROPOSED CONDITION	sf	ac	% of TSA
Basin			
Pervious Areas	94,057	2.159	86.4
Forest, mod	43,440	0.997	39.9
Lawn, mod	50,618	1.162	46.5
Impervious Areas	14,792	0.340	13.6
Roofs	7,499	0.172	6.9
Existing	4,962	0.114	4.6
Proposed	2,537	0.058	2.3
Driveway, mod	7,293	0.167	6.7
Existing	4,450	0.102	4.1
Proposed	2,843	0.065	2.6
Total	108,849	2.499	100.0
PROPOSED CONDITION FOR WWHM	sf	ac	% of TSA
Existing Rain Garden Basin			
Pervious Areas	5,468	0.126	5.0
Lawn, mod	5,468	0.126	5.0
Impervious Areas	4,962	0.114	4.6
Roof	4,962	0.114	4.6
Total	10,429	0.239	9.6
Proposed NE Rain Garden Basin			
Pervious Areas	25,394	0.583	23.3
Lawn, mod	25,394	0.583	23.3
Impervious Areas	9,830	0.226	9.0
Driveway,mod	7,293	0.167	6.7
Existing	4,450	0.102	4.1
Proposed	2,843	0.065	2.6
Roof, proposed	2,537	0.058	2.3
Total	35,224	0.809	32.4
Remaining Basin			
Pervious Areas	63,196	1.451	58.1
Forest, mod	43,440	0.997	39.9
Lawn, mod	19,756	0.454	18.2
Total	63,196	1.451	58.1

100-YEAR STORM FLOW COMPARISON

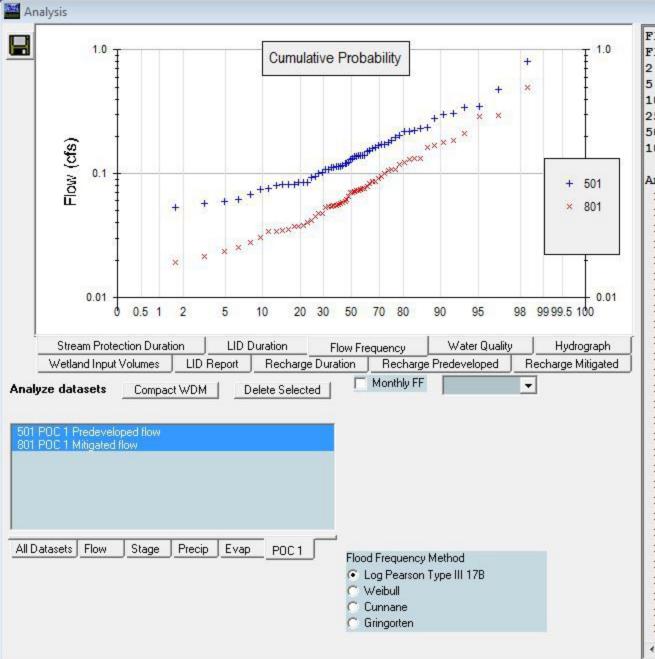
Existing Condition	0.5899 cfs	
Proposed Condition	0.3367 cfs	
Change	-0.2532 cfs	*Off-site runoff will decrease.



Existing RG Basin Predevelope	ed		23	🚯 Existing Rain Garden Predeve	loped		23
Subbasin Name: Existing R	G Basin			Facility Name Existin	g Rain Garden		
Surface		 Interflow	Groundwater		Outlet 1		Outlet 3
Flows To : Surface Rain	Garden	Surface Rain Garden		Downstream Connection	0	0	0
Area in Basin		🔽 Show D	inly Selected				
Available Pervious	Acres	Available Imp	ervious Acres	Use simple Bioretentic	on Quick	: Swale	
C, Lawn, Mod	.126	ROOF TOPS/FLA		Underdrain Used			
	-			Bioretention Bottom Elev	atior 0	Flow Through Underdrain (ac-ft)	0
				Bioretention Dimensions		Total Outflow (ac-ft)	U
					20.000	Total Outnow (ac-rt)	
					20.000	V/O Deserve Channel	00.00
					0.500	WQ Percent Filtered	99.99
				Over-road Flooding (ft)	0.000		
				Effective Total Depth (ft)	3	Facility Dime	nsion Diagram
					0.000	Riser Outlet Structure	<u>+</u>
				Sidewall Invert Location		Outlet Structure Data	
					3.000	Riser Height Above bioretention s	surface (ft) 🛛 📋
				Left Side Slope (H/V)	3.000	Riser Diameter (in) 4 -	÷
				Right Side Slope (H/V)	3.000		-
				Material Layers for			
				Layer1 Layer2	Layer 3		
				Depth (ft) 1.500 0.000	0		
				Soil Layer 1 SMMWW 12 in/I	nr 🔻		
				Soil Layer 2 Sand	-	Orifice Diameter Hei	ight
				Soil Layer 3 GRAVEL	-	Number (in) (ft)	1
				Edit Soil Types		1 0 🕂 0	— +
						2 0 + 0	_ +
				KSat Safety Factor		3 0 + 0	— +
				CNone C2 C4		Bioretention Volume at Riser Hea	d (ac-ft) .048
						Show Bioretention	en Table 🕂
Penview Tetal	1 Anna			Native Infiltration Yes	÷	Total Volume Infiltrated (ac-ft)	28.926
Pervious Total 0.126 Impervious Total 0.114	Acres			Measured Infiltration Rate (in/hr)	0.97 ÷	Total Volume Through Riser (ac-ft)	0.003
	Acres			Reduction Factor (infilt*factor)	1 +	Total Volume Through Facility(ac-ft)	28.929
Basin Total 0.24	Acres			Use Wetted Surface Area (sidewalls	Yes ÷	Percent Infiltrated	99.99
				Total Inflow ac-ft	28.929	Precipitation on Facility (acre-ft)	0
Deselect Zero S	elect By:	GO			20.020	Evaporation from Facility (acre-ft)	0

🚯 Existing Rema	iining Basin Predeveloped			23
Subbasin Na	ame: Existing Remaining Basin			
	Surface	Interflow	Groundwa	iter
Flows To :				
Are	a in Basin	v	Show Only Selected	
Availa	ble Pervious Acres	Availab	le Impervious	Acres
C, Forest,	, Mod 1.582	DRIVEW/	AYS/MOD	.102
🔽 C, Lawn,	Mod .575			

Pervious Total	2.157	Acres	
Impervious Total	0.102	Acres	
Basin Total	2.259	Acres	
Deselect Zero	1	Select By:	GO



🖘 Existing RG Ba	isin Mitigated				23	Existing Rain Garden	n Mitigated			23
Subbasin Na	me: Existing RG B	asin	Designate as Bypass for	POC:		Facility Name	Existing R	ain Garden		
Flows To :	Surface Surface Rain Gar	Inter		Groundwater		Downstream Conne	ection	Outlet 1	Outlet 2	Outlet 3
	a in Basin ble Pervious Mod	Acres 126		Dnly Selected pervious Acres .T		Depth (ft) 1.500	ed m Elevations (ft) 20 (ft) 2	or 0 000 000 000 000 000	Riser Outlet Structure Outlet Structure Data Riser Height Above bioretenti Riser Diameter (in) 4 Riser Type Flat	-ft) 0 99.99 mension Diagram → a on surface (ft) 1 → + i on surface (ft) 1 → + i
Pervious Total Impervious Total Basin Total	0.114 4	Acres Acres Acres				Native Infiltration Measured Infiltration Rate (Reduction Factor (infilt*fact Use Wetted Surface Area (Total Inflow ac-ft	Yes - (in/hr) tor)	÷ 0.97 ÷ 1 ÷ Yes ÷ 29.574	Bioretention Volume at Riser H Show Bioretention Total Volume Infiltrated (ac-ft) Total Volume Through Riser (ac Total Volume Through Facility(ac Percent Infiltrated Precipitation on Facility (acre-ft)	Open Table + 28.926 - ft) 0.003
Deselect Zero	Sel	ect By:	GO						Evaporation from Facility (acre-ft) 0.645

NE RG Basin I	Mitigated				E NE Rain Garden Mi	itigated			
Subbasin Na	ame: NE RG Basin	🔽 Designat	e as Bypass for POC	2.1	Facility Name	NE Rain			
Flows To :	Surface Surface Rain Garden	Interflow Surface Rain G		oundwater	Downstream Con	nection	Outlet 1	Outlet 2	Outlet 3
	ea in Basin Ible Pervious Acr	res Av	Show Only		Use simple Big		Quick	Swale Size Wa	ter Quality _ Size Facility
C, Lawn,	.Mod		DOF TOPS/FLAT RIVEWAYS/MOD	.058	Bioretention Botto Bioretention Dime Bioretention Length (ft) Bioretention Bottom Widtl Freeboard (ft) Over-road Flooding (ft) Effective Total Depth (ft) Bottom slope of bioretenti Distidewall Invert Front and Back side slope Left Side Slope (H/V) Right Side Slope (H/V) Material Layers for Layer 1 Depth (ft) 1.500	om Elevat ensions 3 h (ft) 0 ion.(0-1) 0 t Location e (H/V) 3 or 1 Layer 2 0.000 wW 12 in/hr /EL	3.000 3.000 .500 .000 .000 .000 .000 .00	Riser Outlet Structure Outlet Structure Diameter Riser Height Above bioret Riser Diameter (in) A Riser Type Flat Orifice Diameter Number (in) 1 0 2 0	99.88 Dimension Diagram ata ention surface (ft)
Pervious Total Impervious Total Basin Total	0.583 Acres 0.225 Acres 0.808 Acres				Native Infiltration Measured Infiltration Rate Reduction Factor (infilt*fa Use Wetted Surface Area	e (in/hr) ictor)	().97 ().97 () () () () () () () () () () () () ()	Total Volume Infiltrated (ac-ft Total Volume Through Riser Total Volume Through Facilit Percent Infiltrated) 84.043 (ac-ft) 0.099 y(ac-ft) 84.142 99.88
Deselect Zer	• Select	By:	GO		Total Inflow ac-ft		86.545	Precipitation on Facility (acre Evaporation from Facility (acr	

B Remaining Pro	oposed Basin Mitigated		X
Subbasin Na	me: Remaining Proposed Bas	in 🔽 Designate as I	Bypass for POC:
	Surface	Interflow	Groundwater
Flows To :			
Area	a in Basin	1	Show Only Selected
Availat	ble Pervious Acres	Availa	able Impervious Acres
C, Forest,	Mod .997		
🔽 C, Lawn, I	Mod .454		

Pervious Total	1.451	Acres	
Impervious Total	0	Acres	
Basin Total	1.451	Acres	
Deselect Zero		Select By:	G0

Flow Frequ	Predeveloped	Mitigated
2 Year =	Second statistics and statistics.	0.0667
5 Year =	0.2200	0.1224
10 Year =		0.1705
25 Year =		0.2453
50 Year =		0.3120
100 Year =	0.5899	0.3888
Annual Pea	ks	
1949	0.2179	0.1181
1950	0.2248	0.1314
1951	0.1720	0.1234
1952	0.0811	0.0376
1953	0.0575	0.0276
1954	0.1010	0.0474
1955	0.1214	0.0653
1956	0.1378	0.0750
1957	0.1505	0.0787
1958	0.0923	0.0474
1959	0.0843	0.0418
1960	0.1730	0.0946
1961	0.1083	0.0539
1962	0.0530	0.0254
1963	0.1153	0.0560
1964	0.1307	0.0696
1965	0.1408	0.0730
1966	0.0842	0.0372
1967	0.2350	0.1337
1968	0.1388	0.0726
1969	0.1134	0.0572
1970	0.1146	0.0534
1971	0.1411	0.0751
1972	0.1866	0.1050
1973	0.0740	0.0355
1974	0.1407	0.0700
1975	0.1685	0.0911
1976	0.1231	0.0614
٠ ۱۱۱		

23

E

-